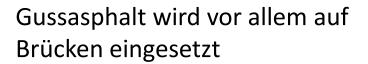


Institut für Materialprüfung, Bauberatung und Analytik.

Prüfung der Gussasphalt - Eindringtiefe Neue Methode und Follow-up Normierung



- Warum?
- 2 Was?
- Wie?

Warum

benötigen wir eine neue Methode?

Brücken befinden sich an neuralgischen Stellen des Strassen-Netzwerks

Bild: Martin Rütschi

Instandhaltungsarbeiten auf Brücken führen unweigerlich zu erheblichen Verkehrs-Behinderungen.

Verzögerungen aufgrund von Qualitätsproblemen wirken sich auf Brücken stärker aus als auf «offenen Strecken».

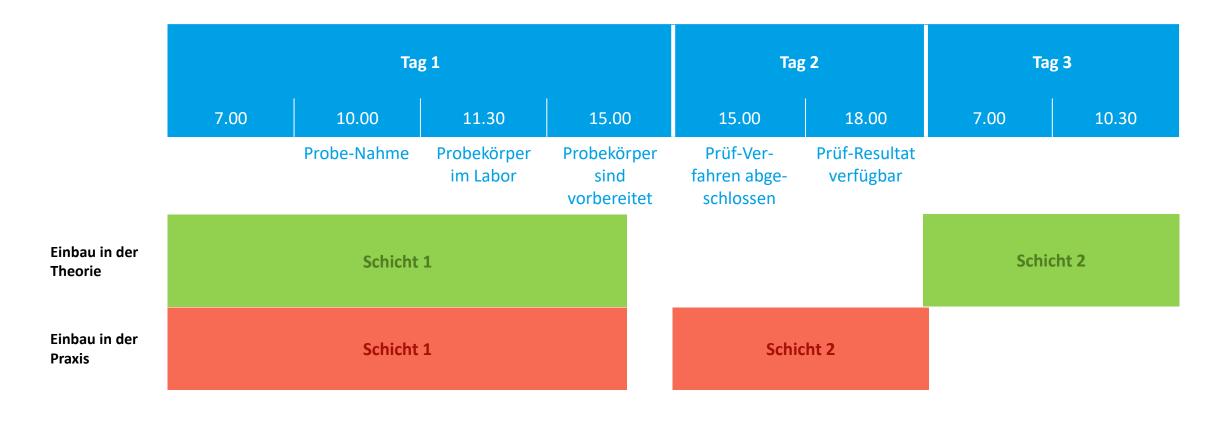
Wenn der Gussasphalt in zwei oder mehr Schichten eingebaut wird...

...die Qualität der ersten Schicht muss bekannt sein, bevor die zweite Schicht eingebaut wird.

→ Prüf-Resultate müssen rasch verfügbar sein.

Folgerung 1

Beim mehrlagigen Gussasphalteinbau auf Brücken dürfen noch weniger Fehler gemacht werden als auf «offenen Strecken»!


Zuverlässige, schnelle Qualitätskontrollen sind gefragt.

Die aktuell gültige Prüfung (ET stat EN 12697-20) hat zwei gewichtige Nachteile:

- Die Dauer der Prüfung
- Die Aussagekraft der Prüfung

Dauer der Prüfung

Bespiel eines zeitlichen Ablaufs "von der Probenahme bis zum Prüfergebnis"

Aussagekraft der Prüfung ET stat

Beispiel aus der Praxis Gussasphalt-Belag auf einer Baustelle über zwei Jahre (gleiche Aufbereitungsanlage/Rezeptur)

Prüf-Parameter	Belag im 1. Jahr	Belag im 2. Jahr
Bindemittel-Gehalt [Masse-%]	6.87	7.04
Füller-Gehalt [Masse-%]	28.8	27.2
Erweichungspunkt Ring&Kugel [°C]	65.0	59.2
ET stat 30' [mm]	1.6	2.3

- Die Unterschiede der einzelnen Parameter sind zum Teil erheblich, zudem ist ihr Einfluss auf die Verformungsbeständigkeit kumulativ -> es sind signifikante Unterschiede punkto Verformungsbeständigkeit zu erwarten
- Die Unterschiede der ET stat sind relativ gering (Zunahme von 44 %)

Aussagekraft der Prüfung ET stat

Beispiel aus der Praxis

Die **ET dyn** zeigt klare Unterschiede:

- ET_{dyn} 1. Jahr: 2.1 mm
- ETdyn 2. Jahr: 5.6 mm → Zunahme von 167 % !!!
- Die ET stat ist nicht in der Lage, die bestehenden Unterschiede zu erfassen und auszuweisen.

Heutige Prüfmethoden zur Charakterisierung der mechanischen Eigenschaften des Gussasphalts:

• Statische Eindringtiefe (EN 12697-20): untauglich für harte Gussasphalt-Rezepturen.

• Dynamische Eindringtiefe (EN 12697-25): sehr gutes Prüfverfahren,

aber benötigt mindestens

3 ½ Tage.

Folgerung 2

Derzeit gibt es kein standardisiertes Verfahren für eine schnelle Qualitätskontrolle.

→ Aber: Es werden zuverlässige und schnelle Qualitätskontrollen benötigt.

i.m.p

Was

ist eine neue Methode?

Anforderungen an eine rasch durchzuführende Prüfung

Was wird erwartet?

- Resultat 6 Stunden nach Eingang im Labor verfügbar
- Ausreichend zuverlässig
- Kann von einfachen Baustellen-Labors durchgeführt werden

Was wird **nicht** erwartet:

Keine Prüfung innerhalb der Typprüfung (Erstprüfung)

Was machen andere Branchen des Baus?

Der Statiker berechnet die Betondruckfestigkeit bei einem Gebäude nach 28 Tagen

- → Der Statiker kann nicht 28 Tage auf die Prüfergebnisse warten.
- → Das gleiche Problem wie beim Gussasphalt !!!

Die Lösung bei Beton-Konstruktionen:

Prüfung von Frischbeton als Kontrollvariablen/Parameter

Wenn die Ergebnisse der Frischbetontests gut sind, werden auch die Eigenschaften des Festbetons (höchstwahrscheinlich) gut sein.

Rasche Methode Eindringtiefe

Grundlegende Ideen betreffend Wahl der Prüfparameter

Hebevorrichtung

Prüfwürfel

Wasserbad

Übliche PmB für Gussasphalt

Erweichungspunkt R & K

PmB 25/50 - **55** PmB 25/55 - **65**

PmB 10/40 - **60**

PmB 10/40 - **70**

→ Prüftemperatur 55 °C

Rasche Methode Eindringtiefe

Grundlegende Ideen betreffend Wahl der Prüfparameter

Einsatz bestehender Prüf-Geräte

Prüftemperatur < Erweichungspunkt R & K

Erhöhung der Last


Bisher

525 N; aufgebracht durch: 25 N (Stab) + 4 x 125 N (Gewichts-Ringe)

Neu

650 N; aufgebracht durch: 25 N (Stab) + 5 x 125 N (Gewichts-Ringe)

Rasche Methode Eindringtiefe

Grundlegende Ideen betreffend Wahl der Prüfparameter

Einsatz bestehender Prüf-Geräte

Prüftemperatur < Erweichungspunkt R & K

Erhöhung der Last

Verkürzung der Belastungszeit

32 Gussasphalt-Proben ausgewertet nach 15' und nach 30':

	ET stat mod [mm]		
	15 Min.	30 Min.	
Mittelwert	1.90	2.14	
Standardabweichung	0.44	0.52	
Variationskoeffizient	0.23	0.24	
Anzahl der Wertepaare	32	32	

→ 15' anstelle von 30' möglich bei gleicher Genauigkeit (Variationskoeffizient)

Rasche Methode Eindringtiefe

Grundlegende Ideen betreffend Wahl der Prüfparameter

Einsatz bestehender Prüf-Geräte

Prüftemperatur < Erweichungspunkt R & K

Erhöhung der Last

Verkürzung der Belastungszeit

Rasche Methode Eindringtiefe

- Einsatz bestehender Prüf-Geräte
- Prüftemperatur 55°C
- Last 650 N
- Belastungszeit 15 Minuten
- Anzahl Prüfkörper

Vorteile dieser Methode (Geschwindigkeit)

	Würfel gemäss Norm	Würfel beschleu-nigt	Zylinder (neu)
Prozessschritt	[h]	[h]	[h]
Entgegennahme der Proben	0.5	0.5	0.5
Teilung der Proben	0.5	0.5	
Aufheizen in einem Ofen	2	2	
Schneiden der Zylinder			0.5
Vorbereitung der Würfel	0.5	0.5	
Abkühlung (Wasserbad)		2	
Warten gemäss den normativen Anforderungen	24		
Konditionierung der Prüftemperatur (Wasserbad)	1	1	1
Prüfung	1.1	1.1	0.5
Auswertung	0.5	0.5	0.5
Erforderliche Gesamtzeit	30.1	8.1	3

→ 27 h schneller

Vorteile dieser Methode (Statistische Signifikanz)

- 24 Gussasphalt-Proben wurden untersucht
- Prüfung gemäss Standard-Methode und gemäss Schnell-Methode
- Die Selektivität wurde anhand des Verhältnisses ET max / ET min aller 24 Gussasphalt-Proben bewertet

Standard-Methode ET max / ET min = 7.0 Rasche Methode ET max / ET min = 11.4

→ Neue Methode spreizt um 50 % besser

Rasche Methode Eindringtiefe

Vorteile:

Zeitgewinn (27 h)

Statistische Signifikanz verbessert (Selektivität um 50 % besser)

Rasche Methode Eindringtiefe

Präzision

- Die Genauigkeit der Methode hängt stark von der Probenentnahme auf der Baustelle ab.
- Für Unternehmungen mit geschultem und erfahrenem Personal, ist die Genauigkeit der Schnell-Methode mit jener der Standard-Methode vergleichbar.

Rasche Methode Eindringtiefe

Anforderungen

Untersuchung der IGV an 40 Gussasphalt-Proben (je 2 Probekörper getestet) als Grundlage für vorläufige Anforderungen:

MA Typ	Anforderung	Anzahl der geprüften Proben	Bemerkung
MA 8 und MA 11 (S und H)	< 2.5 mm *	35	*Zielwert
MA 5	< 3.0 mm **	5	**Richtwert

Wie

implementieren wir die Erkenntnisse in die EN-Normierung?

EN-Normierung

Die bestehende EN 12697-20...

...beinhaltet bereits zwei Prüf-Methoden

- Prüfung von Gussasphalt an Würfeln
- Prüfung an zylindrischen Probekörpern für andere Asphalte als Gussasphalt

EN-Normierung

Beispiele von Normen mit mehreren Prüfmethoden

EN 12697-25 «Druckschwellversuch»

Methode A – Einaxialer Druck-Schwellversuch mit behinderter Querdehnung Methode A1 – Blockimpuls-Belastung Methode A2 – Haversine-impulsförmige Belastung

Methode B – Triaxialer Druck-Schwellversuch

EN 12697-24 «Beständigkeit gegen Ermüdung»

- 2-Punkt-Biegeprüfung an trapezförmigen Probekörpern (2PB-TZ)
- 2-Punkt-Biegeprüfung an prismatischen Probekörpern (2PB-PR)
- 3-Punkt-Biegeprüfung an prismatischen Probekörpern (3PB-PR)
- 4-Punkt-Biegeprüfung an prismatischen Probekörpern (4PB-PR)

Indirekte Zugprüfung an zylindrischen Probekörpern (IT-CY)

Indirekte zyklische Zugprüfung an zylindrischen Probekörpern (CIT-CY)

EN-Normierung der Schnell-Methode

Der einfachste Weg →

Ergänzung der bestehenden Norm EN 12697-20 mit einer dritten Methode.

Dank an die IGV, welche Teile der Studie finanzierte:

- → Entwicklung der Methode: Bundesamt für Strassen ASTRA (Schweiz) (IMP)
- **→** Validierung der Methode:
- → Internationale Gussasphalt-Vereinigung (IGV)

 (IMP/ Berner Fachhochschule)
- → Definition der Anforderungen Internationale Gussasphalt-Vereinigung (IGV) (IMP/ Berner Fachhochschule)

i.m.p

Besten Dank.

