IMAA Annual meeting 2023, Bruges

Theoretical mixture design method for mastic asphalt

Dr. Annette Gail Belgian Road Research Centre

Content

- Introduction
- Theoretical mixture design method
- Results of BRRC research project:
 - Application of mixture design to mastic asphalt particularities
 - Comparison with performance characteristics
 - Case study 1: Impact of type of filler
 - Case study 2: Impact of type of sand
- Conclusions

Introduction – Why do we need welldesigned mixtures?

A good mixture design

- Reduces the risk of damages
- Lowers costs (economic, social, environmental)
- Increases the service lifetime

Introduction – What is mixture design?

Introduction - Advantages of mixture design

Ō

Reduction of lab tests for a new mixture

Lower risk of mixtures with poor performance

React quickly on changes in material characteristics

Design mixtures with unknown materials, e.g. new type of fillers

Calculation of a new mixture with software: ≤ 10 minutes

No trial and error

Theoretical mixture design method - Basic principles

Example: Asphalt concrete

- Volumetric formulation is necessary for the calculation
- > In practice (after calculation): Composition in mass for weighing

Theoretical mixture design method – Particularities for mastic asphalt

Mineral aggregates

Mastic asphalt at ambient temperature: low or no voids or light binder surplus Mastic asphalt at production temperature: binder surplus

Calculation of mixture composition – What is needed?

Theoretical parameters – Voids in mineral aggregate (VMA)

where $\frac{D_1}{D_2} \approx 0$

Binary mix

 ϵ_1 : porosity of fine aggregate; ϵ_2 : porosity of coarse aggregate, C_2 : concentration of coarse aggregate

Theoretical parameters - Voids in the bituminous mixture

Composition in volume

Example: Mastic asphalt at ambient temperature

Theoretical parameters – Mastic asphalt Binder surplus at production temperature

Correlated to voids in bituminous mixture

Results BRRC project (series of mastic asphalts MA 6,3 – protection layer for waterproofings):

Theoretical parameters - Mastic stiffness indicator (MSI)

Function of

- Voids in the filler (Rigden voids) and
- Ratio volume filler/volume bitumen

For bitumen it corresponds to: Results of 'Delta Ring and Ball Test' on bitumen/filler mixture (EN 13179-1)

Calculation of mixture composition

Calculation of mixture composition and theoretical parameters needs software support

BRRC developped PradoWeb software (Program for Road Asphalt Design and Optimisation) based on long-term research

Comparison with performance characteristics

Project of the Belgian Road Research Centre (funded by the Belgian Bureau for Standardisation):

Comparison with performance characteristics

Results of BRRC study (mixtures with neat bitumen, no additives/PmB):

Compromise has to be found between: Workability and resistance to permanent deformation

Case study 1: Exchange of the filler

Limestone	Rigden	Perc	entage passing by r	nass
filler	voids [%]	Sieve 0,25 mm	Sieve 0,125 mm	Sieve 0,063 mm
1	36	100	99	93
2	32	100	98	80

Grading curves of the two mastic asphalts (same target curve):

Case study 1: Exchange of the filler

	Theoretical parameters			Measu	rements: Inde	ntation
Mastic asphalt with filler	VMA [%]	Voids in mixture [%]	MSI [°C]	30 ' [mm]	60 ' [mm]	Δ [mm]
1	19,9	0,8	73,2	3,9	4,8	0,9
2	18,2	-1,3	46,4	4,6	5,9	1,3

Lower percentage of voids (+ binder surplus) + low MSI: ⇒ Less resistant against deformation

Case study 1: Exchange of the filler

	Theoretical parameters		
Mastic asphalt with filler	VMA [%]	Voids in mixture [%]	MSI [°C]
1	19,9	0,8	73,2
2	18,2	-1,3	46,4

Lower percentage of voids (+ binder surplus) + low MSI: ⇒ Better workability

Case study 2: Composition of the sand fraction

		Theoretical parameters		
Mixture	Sand fraction	VMA [%]	Voids in mixture [%]	MSI [°C]
Reference A	75 % angular (0/2) 25 % round (0/2)	20,0	0,9	72,0
Variant with round sand	76 % round (0/4) 24 % round (0/2)	18,8	-0,5	74,9

- Same target grading curve for the two mixtures
- > Small differences in % of filler, same bitumen content (\rightarrow almost identical MSI)
- Differences in VMA and voids in mixture

Case study 2: Composition of the sand fraction

	Theoretical parameters		Measurements: Indentation			
Mixture	VMA [%]	Voids in mixture [%]	MSI [°C]	30 ' [mm]	60 ' [mm]	Δ [mm]
Reference A	20,0	0,9	72,0	2,5	2,9	0,4
Variant with round sand	18,8	-0,5	74,9	2,9	3,3	0,4

Lower percentage of voids (+ binder surplus): ⇒ Less resistant against deformation

Case study 2: Composition of the sand fraction

	Theoretical parameters			
Mixture	VMA [%]	Voids in mixture [%]	MSI [°C]	
Reference A	20,0	0,9	72,0	
Variant with round sand	18,8	-0,5	74,9	

Case study 2: Composition of the sand fraction

	Theoretical parameters			
Mixture	VMA [%]	Voids in mixture [%]	MSI [°C]	
Reference A	20,0	0,9	72,0	
Variant with round sand	18,8	-0,5	74,9	

Lower percentage of voids (+ binder surplus): ⇒ Better workability

Conclusions 'Theoretical mixture design method'

- Lowering of costs
- Preselection of promising mixture candidates without tests
- Reduction of lab tests
- Exchange of components becomes easier
- > Better quality of mixtures and lower risks for contractors and road owners

Limitations of the theoretical method:

- Impact of additives/PmB not yet studied (complex task)
- > Assesses the impact of granular materials and composition but not yet the binder type

		1
	_	
<	_	
Υ,	_	
	_	

More information

BRRC Code of good practice for the design of bituminous mixtures (mastic asphalt not yet included in detail):

- French: https://brrc.be/sites/default/files/2022-12/R105.pdf
- Dutch: https://brrc.be/sites/default/files/2022-12/A105.pdf

PradoWeb software (Program for Road Asphalt Design and Optimisation):

<u>https://brrc.be/en/innovation/innovation-overview/pradoweb</u>

Thank you for your attention

